симметрии. Симметрия в природе отражается в симметрии физических законов. По мнению лауреата Нобелевской премии Э. Вигнера, «в физике существуют три уровня описания: уровень явлений, уровень законов природы, уровень принципов симметрии. Если законы природы устанавливают взаимосвязи между явлениями, то принципы симметрии устанавливают связи между законами природы. Принцип симметрии— это закон физических законов».

В ученические годы молодые люди наиболее способны воспринять слова А. Эйнштейна: «Радость видеть и понимать — самый прекрасный дар природы».

Литература

- 1. *Каиров И.А.*, *Петров Ф.Н.* Педагогическая энциклопедия: В 4-х томах. М.: Изд-во Советская энциклопедия, 1966.
- 2. *Мощанский В.Н.* Гуманитарный аспект при изучении физики в средней школе. Псков: Изд-во Псковского ИУУ, 1994.
- 3. *Демидова М.Ю*. Методические рекомендации по некоторым аспектам совершенствования преподавания физики. М.: ФИПИ, 2013.
- 4. Демидова М.Ю. Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2018 года по физике // Педагогические измерения. 2018. N 4.

ОСВОЕНИЕ ГРАНИЦ ПРИМЕНИМОСТИ ЗНАНИЙ ПРИ ИЗУЧЕНИИ КВАНТОВОЙ ФИЗИКИ

Ю.А. Сауров , д.п.н., член-корреспондент РАО, профессор кафедры физики и методики обучения физике Вятского государственного университета, г. Киров; saurov-ya.ru	Y.A. Saurov, DrSci (Pedagogy), corresponding member of RAO, professor of physics and physics teaching of the Vyatka State University, Kirov; saurov-ya.ru
К.А. Коханов , к.п.н., доцент, зам. директора Кировского Центра дополнительного образования одаренных школьников	K.A. Kokhanov, PhD (Pedagogy), Assistant professor, zam. director continuing education Kirov Center for gifted pupils
Ключевые слова : методология, научный метод познания, границы применимости, приемы учебной деятельности	Keywords : methodology, scientific method of cognition, border applicability, methods of training activities
В статье рассмотрены общие рекомендации и конкретные методические приемы использования границ применимости знаний при изучении квантовой физики	The article describes the General guidelines and specific methodological techniques using ambit knowledge when studying quantum physics

Мы желаем, чтобы наблюдаемые факты следовали из нашего понимания реальности.

А. Эйнштейн [14, с. 543]

Задумаемся: разве можно построить будущее, не зная и не понимая проблем и границ настоящего? А ведь это так и в науке... Академик А.Б. Мигдал писал: «Научный подход начинается с определения границ области, которая включает достижения науки, не вызывающие сомнений, и границ области невозможного...» [7, с. 8]. Фундаментальная устойчивость научных знаний обеспечивается и согласованностью, может

22 ФИЗИКА В ШКОЛЕ **6**/2019

зические объекты. А такими понятиями, как излучение света, фотоэффект, взаимодействие ядра атома и электронов, взаимодействие нуклонов, ядерные реакции, движение и взаимодействие элементарных частиц, обозначены физические явления. Важно зафиксировать, что периодически эта физическая реальность изменяется — дополняется, уточняется. И сама по себе она определяет исторические границы нашего объективного мира.

Чтобы зафиксировать один факт существования бозона Хиггса, надо было пронаблюдать, запротоколировать и проанализировать миллионы элементарных событийявлений. И сами эти сложные процедуры задают ограничения на эмпирическое «существование» факта.

- 1. В квантовой физике определяются границы идентификации объекта. Говорят даже о квантовой лестнице [2, с. 46 и др.]. Только для определенного интервала энергий физическая система существует. Например, для атома водорода энергия ионизации 13,6 эВ, а для разрушения ядра необходимы энергии порядка МэВ. В случае сильного взаимодействия двух протонов образуется ливень частиц. И здесь обнаруживаются границы классических представлений об индивидуальности объекта: объект «состоит» из множества других объектов...
- 2. В учебнике приведен вопрос: «Что такое красная граница фотоэффекта?». Относится ли этот вопрос к границам установления знаний? (Нет, это лишь название одного из экспериментальных фактов явления фотоэффекта.)
- 3. Каковы границы применимости закона радиоактивного распада? (Справедлив для большого числа ядер.) Для освоения представлений надо искать подходящие задания. Например.

При исследовании превращения радиоактивного вещества в двух опытах с разной массой вещества было установлено, что число N частиц, образующихся в единицу времени при радиоактивном распаде, убывает

во времени в соответствии с графиками (рис. 1). Для объяснения различий экспериментальных кривых в этих опытах были сформулированы две гипотезы: А) грубые погрешности в первом эксперименте; Б) вероятностный характер закона радиоактивного распада. Какая из этих гипотез и при каких условиях справедлива?

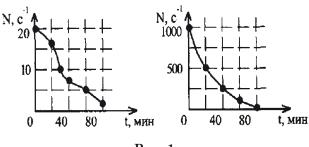
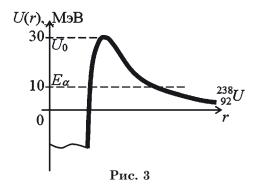


Рис. 1


Для понимания коллективно обсуждаются вопросы: какие отклонения экспериментального факта от предсказанного законом результата можно объяснить не выходом за границы применимости закона, а ограниченностью экспериментального метода? На явление радиоактивности вещества нельзя повлиять изменением внешних физических условий. О каких ограничениях закона идет речь, если утверждают, что метод углеродного анализа возраста исторических объектов может дать неправильный результат? (Здесь речь идет об условиях применения закона: в разные эпохи количество радиоактивного изотопа углерода в атмосфере Земли было разным, отчего не всегда известно начальное количество радиоактивных ядер.)

4. П. Лебедев экспериментально доказал существование давления света, и теоретическое объяснение Максвелла на основе волновых представлений о свете стало научным фактом. Но почему этот явно макроскопический эффект-факт объясняют квантовыми моделями о строении света? (Существование давления света качественно легче понять с помощью дискретной модели света.) И определяются ли границы

Любое распространение материалов журнала, в т.ч. архивных номеров, возможно только с письменного согласия редакции.

смогла рассчитать свойства сложных атомов. Не смогла объяснить время существования возбужденного состояния атома.)

- 2. Почему протонно-нейтронная модель ядра заменяется на капельную модель при объяснении деления ядер урана? И можно ли говорить о границах применимости этих моделей? (Протонно-нейтронная модель ядра объясняет состав и строение ядра, дает понимание его массы и заряда, устойчивости. Но понимание механизма деления ядер, по аналогии с каплей жидкости, легче с помощью капельной модели ядра. Итак, границы применимости модели могут определяться сложностью ее использования.)
- 3. Почему α-распад объясняют на основании сугубо квантового эффекта туннельного перехода? (Энергия α-частиц практически постоянна, не превышает 10 МэВ (рис. 3), что недостаточно для преодоления кулоновского барьера высотой в 30 МэВ. Но эти классические границы возможного преодолеваются в квантовой физике на основе вероятностного описания движения.)

- 4. Из-за неясности границ представлений затруднено понимание явлений. Об этом говорят ответы учителей на тестовый вопрос: какими из фундаментальных взаимодействий пренебрегают при описании (построении) моделей атомного ядра? Варианты ответов: А) Гравитационное (37%). Б) Слабое (12%). В) Электромагнитное (12%). Г) Сильное (2%). Д) Гравитационное и слабое (37%).
 - 5. Как определить различие явлений

атомной и ядерной физики? (Прежде всего пространтсвенно-временной областью, взаимодействующими объектами.) Интресны на этот счет ответы учителей на вопрос: некоторым атомом был испущен один фотон длиной волны 600 нм (красный свет). Что могло быть причиной этого явления? Варианты ответов: А) Переход атомного ядра из возбужденного состояния в невозбужденное (25%). Б) Переход электрона в атомной оболочке с вышележащего энергетического уровня на нижележащий энергетический уровень (46%). В) Вылет α-частицы из ядра (4%). Г) Аннигиляция атома при взаимодействии со своим антиатомом (21%). Д) Нет верного ответа (4%).

(Комментарий к ответу. Фотоны с длиной волны, соответствующей видимому свету, могут появиться только в результате перехода электрона с вышележащего энергетического уровня на нижележащий; γ-кванты, появляющиеся при внутриядерных превращениях, имеют значительно меньшие длины волн.)

Теоретические законы. Считаем различение понятий «формула» и «закон» принципиальным для методики. Чем является выражение $hv = A + mv^2/2$ — уравнением или законом Эйнштейна? Для нас очевидно, что физический закон, выраженный, например, формулой, существенно содержательнее, чем просто формула. Назвать закон формулой — это принижение закона! Особенно характерно это проявляется при сравнении разных формул: чем отличаются формулы $hv = A + mv^2/2$ и E = hv? Первая это формула закона, вторая — формула для вычисления кванта энергии, т.е. определения энергии. Из формулы определения величины не следует ее зависимость от других величин, например, из формулы $\rho = m/V$ не следует пропорциональная зависимость плотности от массы. Плотность для данного вещества — постоянная величина.

И далеко не случайны ошибки в использовании формулы закона фотоэффекта: закон сохранения энергии в такой форме